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Abstract

The galactic heavy ion transport code (GCRTRN) and the nu-

cleon transport code (BRYNTRN) are integrated into a code package

(HZETRN). The code package is computer efficient and capable of op-

crating in an engineering design environment for manned deep space

mission studies. The nuclear data set used by the code is discussed

including current limitations. Although the heavy ion nuclear cross

sections are assumed constant, the nucleon-nuclear cross sections of

BRYNTRN with full energy dependence are used. Tile relation of thc

final code to the Boltzmann equation is discussed in the context of sire-
pIifying assurnptions. Error generation and propagation is discussed,

and comparison is made with simplified analytic solutions to test nu-

tactical accuracy of the final result. A brief discussion of biological

issues and their impact on fundamental developments in shielding tech-
nology is given.

1. Introduction

Propagation of galactic ions through matter has been studied for the past 40 years as a means

of determining the origin of these ions. Peters (1958) used the one-dimensional equilibrium

solution and ignored ionization energy loss and radioactive decay to show that the light ions

have their origin in the breakup of heavy particles. Davis (1960) showed that one-dimensional
propagation is simplistic and that leakage at the galactic boundary must be taken into account.

Ginzburg and Syrovatskii (1964) argued that the leakage can be approximated as a supcrposition
of nonequilibrium one-dimensional solutions. The "solution" to the steady-state equations is

given as a Volterra equation by Gloecklcr and Jokipii (1969), which is solved to first order in
the fragmentation cross sections by ignoring energy loss. They provide an approximation to the

first-order solution with ionization energy loss included that is only valid at relativistic energies.

Lezniak (1979) gives an overview of cosmic ray propagation and derives a Voltcrra equation

including the ionization energy loss which he refers to as a solution "only in the iterativc sense"
and evaluates only the unperturbed term. No attempt is made to evaluate either the first-order

or higher order perturbation terms. The main interest among cosmic ray physicists has been in
first-order solutions in the fragmentation cross sections, since path lengths in interstellar space

are on the order of 3 4 g/cm 2. Clearly, higher order terms cannot bc ignored in accelerator

or space shielding transport problems (Wilson 1977a, 1977b, and 1983; Wilson et al. 1984).
Aside from this simplification, the cosmic ray studies that were discussed have neglected the
complicated three-dimensional nature of the fragmentation process.

Several approaches to the solution of high-energy heavy ion propagation including the
ionization energy loss have bccn developed (Wilson 1977a, 1977b, and 1983; Wilson et al.

1984, 1989a, and 1987b; Wilson and Badavi 1986; Wilson and Townsend 1988; Curtis, Doherty,
and Wilkinson 1969; Allkofer and Heinrich 1974; Chattcrjee, Tobias, and Lyman 1976; Letaw,

Tsao, and Silberberg 1983; Ganapol, Townsend, and Wilson 1989; Townsend, Ganapol, and

Wilson 1989) over the last 20 years. All but one (Wilson 1977a) have assumed the straight

ahead approximation and velocity conserving fragmentation interactions. Only two (Wilson

1977a; Wilson et al. 1984) have incorporated energy-dependent nuclear cross sections. The

approach by Curtis, Doherty, and Wilkinson (1969) for a primary ion beam represented the

first generation secondary fragments as a quadrature over the collision density of the primary
beam. Allkofer and Heinrich (1974) used an energy multigroup method in which an energy-

independent fragmentation transport approximation was applied within each energy group after

which the energy group boundaries were moved according to continuous slowing down theory

(-dE/d:c). Chatterjee, Tobias, and Lyman (1976) solved the energy-independent fragment
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transport equation with primary collision density as a source and neglected higher order

fl'agmentation. The primary source term extended only to the primary ion range from the

boundary. The energy-independent transport solution was modified to account for the finite

range of the secondary fragment ions.

Wilson (1977b) derived an expression for the ion transport problem to first order (first

collision term) and gave an analytic solution for the depth-dose relation. The more common

approximations used in solving the heavy ion transport problem were further examined by

Wilson (1977a). The effects of conservation of velocity on fragmentation and the straight ahead

approximation are found to be negligible for cosmic ray applications. Solution methods for

representing tile energy-dependent nuclear cross sections are developed (Wilson 1977a). Letaw,

Tsao, and Silberberg (1983) approximate the energy loss term and ion spectra by simple forms
for which energy derivatives are evaluated explicitly (even if approximately). The resulting

ordinary differential equations in position are solved analytically similar to the method of
Allkofer and Heinrich (1974). This approximation results in a decoupling of motion in space

and a change in energy. In Letaw's formalism, the energy shift is replaced by an effective

attenuation factor. Wilson (1983) adds the next higher order (second collision) term. This
term was found to be very important in describing 2°Ne beams at 670 MeV/amu. The three-

term expansion was modified to include the effects of ener_" variation of the nuclear cross

sections (Wilson et al. 1984). The integral form of the transport equation was also used to
derive a numerical marching procedure to solve the cosmic ray transport problem (Wilson

1977a; Wilson and Badavi 1986). This method can easily include the energy-dependent nuclear
cross sections within the numerical procedure. Comparison of the numerical procedure with

an analytical solution to a simplified problem (Wilson and Badavi 1986; Wilson and Townsend

1988) validates the solution technique to about 1 percent accuracy. Several solution techniques
and analytic methods have been developed for testing fllture numerical solutions to the transport

equation (Ganapol, Townsend, and Wilson 1989; Townsend, Ganapol, and Wilson 1989). More

recently, an analytic solution for the laboratory ion beam transport problem has been derived

with a straight ahead approximation, velocity conservation at the interaction site, and energy-

independent nuclear cross sections {Wilson et al. 1989a).

In this overview of past developments, the applications split into two separate categories

according to a single ion species with a single energy at the boundary versus a broad

host of elemental types with a broad, continuous energy spectrum. Techniques requiring a

representation of the spectrum over an array of energy values require vast computer storage and

computation speed for the laboratory beam problem to maintain sufficient energy resolution.
On the other hand, analytic methods (Wilson 1977a) are probably best applied in a marching

procedure (Wilson and Badavi 1986), which again has within it a similar energy resolution
problem. This is a serious limitation because we require a final High Charge and Energy (HZE)

Code for cosmic ray shielding that has been validated by laboratory experiments. There is

some hope of having a single code which is able to be validated in the laboratory (Wilson et al.

1984; Schimmerling et al. 1989; Schimmcrling 1990). More recently a Green's function has been
deriw_d which holds promise for a code which may be tested in the laboratory environment and

applied to space radiation protection (Wilson et al. 1990).

In the present paper, we start with the general Boltzmann equation and simplify by using

the standard assumptions to derive the straight ahead equation in the continuous slowing

down approximation with the assumption that heavy projectile breakup conserves velocity.
A numerical procedure is derived with the coupling of the heavy ions to the nucleon fields.

Numerical stability and error propagation are discussed. Analytic benchmark solutions are
used to test the numerical procedures. The nuclear data and nuclear models are presented. The

general computational procedures and data base have been in use for GCR shielding studies
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sinceabout 1987. A discussionof relatedbiologicalissuesand their impacton the needfor
future codedevelopmentis alsogiven.

2. Boltzmann Equation

Sincethevolumeof anymaterialismostlyelectrons,it isnaturalthat mostof the interactions
of energeticionspassingthrough anymaterialarewith electrons.The crosssectionfor the
interactionsof atomicelectron(7at is

(_at _ 10-16 cm 2

The long range of the nuclear coulomb field also prescnts a sizable cross section _ _ to the passing
ion

o -c ,._ 10 -19 cm 2

and ion collisions are dominated by these two processes but individual collisions have little effect

oil the passing ion.

Although most collisions in the material are coulomb collisions with orbital electrons and

nuclei, the rare nuclear reactions are of importance because of the large energy transferred in the

reaction and the generation of new energetic particles. This process of transferring kinetic cnergy

into new secondary radiations occurs through several different processes, such as direct knockout

of nuclear constituents, resonant excitation followed by particle emission, pair production, and
possible coherent effects within the nucleus. Through these processes, a single particle incident

on the shield may attenuate through energy transfer to electrons of the media or generate a

multitude of secondaries causing an increase in exposure (transition effect). Which process

dominates depends on energy, particle type, and material composition. This development

of cascading particles is depicted in figure 2.1 as a relative comparison between high-energy

proton and alpha particle cascades in tile Earth's atmosphere. Note tile similarities displayed

in figure 2.1 for individual reaction events and tile nuclear star events shown in figure 2.2 for

nuclear emulsion (Krebs 1950).

Proton initiated cascade Alpha initiated cascade

Figure 2.1, Cascade development in low Z materials.
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The relevant transport equations are derived on the basis of conservation principles. Consider

a region of space filled by matter described by appropriate atomic and nuclear cross sections. In

figure 2.3, we show a small portion of the region enclosed by a sphere of radius 6. The number

of particles of type j leaving a surface element 62 dFt is given as Cj(x + 5Ft, f_, E)52 df_ where

Cj(x, f_, E) is the particle flux density, x is a vector to the center of the sphere, Ft is normal to
the surface element, and E is the particle energy. The projection of the surface element through

the sphere center to the opposite side of the sphere defines a flux tube through which pass a

number of particles of type j given as Cj(x- 5fl, _,E)52 dF_, which would equal the number

leaving the opposite face if the tube defined by the projection were a vacuum. The two numbers

of particles in fact differ by the gains and the losses created by atomic and nuclear collisions as
follows:

0j(xn a 6_, fl, E)52 df_ = Cj(x - 6f_, f_, E)62 d_

+6 2 d. flede /ajk(n, ',E,E') Ck(x + g",f_',E') df_'

- 52 da f_ dgaj (E) Cj (x + gFt, f_, E)
J-O

dE r

(2.1)

where aj(E) and ajk(n, FtI, E, E _) are the media macroscopic cross sections. The cross section

ajk(f_ ' _r, E, E _) represents all those processes by which type k particles moving in direction
12r with energy E r produce a type j particle in direction fl with energy E. Note, there may

be several reactions which may accomplish this result and the appropriate cross sections of

equation (2.1) are the inclusive ones. Note that the second term on tile right-hand side of
equation (2.1) is the source of secondary particles integrated over the total volume 25(52 dfl)

and the third term is the loss through nuclear reaction integrated over the same volume. We

expand the terms of each side and retain terms to order 6 3 explicitly as

52 dn [¢j(x, n, E) + 6a. VCj(x,a, E)] = 52 da [¢j(x, a, E) - 6a. V¢¢(x, n, E)

+ 26 __, / crjk(a, Ft', E, E') Ck(x, a', E') tin' dE'
k

-25aj(E) Cj(x, _t, E)] + 0(54) (2.2)

which may be divided by the cylindrical volume 26(52 df_) and written as

a- vCj (x, f_,E) = __, / ajk(f_ , 12', E, E')¢k(x , a', E') dFt' dE'
k

- +0(6) (2.3)

for which the last term 0(5) approaches zero in the limit as 5 _ 0. Equation (2.3) is recognized

as a time-independent form of the Boltzmann equation for a tenuous gas. Atomic collisions

(i.e., collisions with atomic electrons) preserve the identity of the particle, and two terms of the

right-hand side of equation (2.3) contribute. The differential cross sections have the approximate
form for atomic processes

at t t at t - 1) 5jka_k(l'_,ll,E,E)=Eajn(E ) 6(Ft.ll' 6(E+en-E')
71

(2.4)

where n labels the electronic excitation levels and 27_represents the corresponding excitation

energies which are small (1 100 eV in most cases) compared with the particle energy E. The



atomictermsmaythenbewritten as

jkk ,f_',E,E') bk(x,_',E') da' dE' c_t(E) Cj(x,f_,E)
k

= _ at%,(E + _) Cj(x, n, z + _T,)- _)t(E) ¢_(,,,a, E)
7/

n ?%

- _)_(E) Cj(x, a, E)
0

- oE [sj(F) Cj(×,n, m] (2.5)

since the stopping power is

and the total atomic cross section is

Sj(E) = _ crjn(E)(n (2.6)
71,

at •

o'er(E) = _ °'jn(E) (2.7)

Equations (2.5) to (2.7) allow us to rewrite equation (2.3) in the usual continuous slowing down
approximation as

a. vOj(x, a, E) - O [S¢(E)¢_(×,n,E)] + _¢(E) ¢¢(×,a, E)

: f _ _jk(a, a', E, E') Ok(x,a', E') dn' dE'
k

(2.8)

where the cross sections of equation (2.8) now contain only the nuclear contributions.

The purpose of the rest of this report concerns finding values for the atomic and nuclear cross

sections, evaluating solutions to equation (2.8) for various boundary conditions, and making
application to various radiation protection issues.

The response of materials to ionizing radiation is related to the amount of local energy
deposited and the manner in which that energy is deposited. The energy given up to nuclear

emulsion is shown for several ions in figure 2.4. The figure registers developable crystals caused

by the passage of the particle directly by ionization or indirectly by the ionization of secondary

electrons (&rays). These &rays appear as hairs emanating fl'om the particle track. Note that

the scale of the &ray track is on the order of biological cell dimensions (2 10 pm). Many of the

modern large integrated circuits are even of the 0.5 #m scale. For this scale, track structure

effects become important as interruptive events as a particle passes through active elements of
such circuits.

From the radiation protection perspective, the issues of shielding are somewhat clearly drawn.

Given the complex external environment, the shield properties alter the internal environment

within the spacecraft structure as shown in figure 2.5. The internal environment within the

spacecraft interacts with onboard personnel or equipment. If sufficient knowledge is known

about specific devices and biological response, then the shield properties can be altered so as

to minimize adverse affects. Since the shield is intimately connected to the overall engineering

systems and often impacts launch cost, the minimization of radiation risk is not independent

of other risk factors and mission cost. Even mission objectives are at times impacted by radiation

6
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protection requirements (e.g., the Viking solar cell design to ensure sufficient solar power in the
event of decreased performance caused by a large solar flare during the mission affected the

weight allowed the experiments package). The uncertainty in shield specification is clearly an
important factor when such critical issues are being addressed. There is uncertainty in subsystem

response which can be easily (more or less) obtained for electronic or structural devices. The

uncertainty in response of biological systems is complicated by the long delay times (up to 30
theyears) before System response occurs and Unusually small Signai-to-noise ratio in biological

response. Clearly a difficult task remains before risk assignments can be made for long duration
deep space missions.

3. Transport Formalism

The Boltzmann equation in the continuous slowing approximation is given by

ft. V ]Aj Sj(E) + _j(E) Cj (x, n, E)

: Z [ dE' (E,E',a, a') (x,a', E')
k v

(3.1)

where Cj (x, Ft, E) is the flux of ions of type j with atomic mass Aj at x with motion along Ft
and energy E in units of MeV/amu (note that the energy units of eq. (2.8) are MeV), aj(E)

is the corresponding macroscopic cross section, Sj(E) is the linear energy transfer (LET), and

_rjk (E, E I, ft, ftl) is the production cross section for type j particles with energy E and direction
by the collision of type k particle of energ3, E t and direction ft _. The term on the left-hand

side of equation (3.1) containing Sj (E) is a result of the continuous slowing down approximation,
whereas the remaining terms of equation (3.1) are the usual Boltzmann terms. The solutions

to equation (3.1) are unique in any convex region for which the inbound flux of each particle

type is specified everywhere on the bounding surface. If the boundary is given as the loci of the

two-parameter vector function 7(s, t) for which a generic point on the boundary is given by F,
then the boundary condition is specified by requiring the solution of equation (3.1) to meet

0j (r, n, E) = Cj(r, n, E) (3.2)

Y

for each vMue of ft such that

ft. n(r) < 0 (3.3)

where n(F) is the outward-directed unit normal vector to the boundary surface at the point F

and _pj is a specified boundary function.

The fragmentation of the projectile and target nuclei is represented by the quantities

_jk (E, E r, ft, ft'), which are composed of three functions:

_jk (E, E', n, if) -- _(E') _jk(Et) Ijk (E, E', a, a') (3.4)

where L,jI_(E') is the average number (which we loosely refer to as multiplicity) of type j particles

being produced by a collision of type k of energy E _ and fjk (E, E r, f_, _) is the probability
density distribution for producing particles of type j of energy E into direction ft from the

collision of a type k particle with energy E _ moving in direction Ftr. For an unpolarized source of

projectiles and unpolarized targets, the energy angle distribution of reaction products may be

a function of the energies and cosine of the production angle relative to the incident projectile

direction. The secondary multiplicities Ujk(E ) and secondary energy angle distributions are the
major unknowns in ion transport theory.

8



Informationon the multiplicity ujk(E) wasobtainedin the past throughexperimentswith
galacticcosmicraysasan ion source,andthe fragmentationof the ions on target nucleiwas
observedin nuclearemulsion(Cleghorn,Freier,andWaddington1968).Suchdataaremainly
limited by not knowingthe identity of the initial or secondaryionspreciselyandby relatively
low countingratesof eachion type. The heavyion accelerationby machinemakesa reduction
in the uncertaintypossiblebecauselargecount ratescanbe obtainedwith knownion types.
In addition,the acceleratorexperimentsareprovidinginformationon the spectraldistribution
fjk (E, E', _, fY) which has not before been available (Heckman et al. 1972).

The spectral distribution function is found to consist of two terms that describe the

fragmentation of the projectile and the fragmentation of the struck nucleus as follows (Heckman
1975; Raisbeck and Yiou 1975):

P !

ajk(E,E',f_,fY)=ak(E')[ujk(E) fPjk (E, E', _, a') + "jT(E') fTjk(E, E', a, ff)] (3.5)

where _ and fjP depend only weakly on the target and 6 and fj_ depend only weakly on

the projectile. Although the average secondary velocities associated with fP are nearly equal to

the projectile velocity, the average velocities associated with fr are near zero. Experimentally,

Heckman (1975) observed that

fP (E, E r, _-'_, _"_')jk [ m 13:2_p 2 2v_xp p 2
J J

3/2

2v/2-Eexp ----_T _ (3.6)
2 (°jk) J

where p and p! are the momenta per unit mass of j and k ions, respectively, and

:j_ (z,z',a,a')
] 3/2

m v/_ exp (3.7)

where a_ and a T are related to the root mean square (rms) momentum spread of secondary3_c

products. These parameters depend only on the fragmenting nucleus. Feshbach and Huang

(1973) suggested that the parameters aP and ark depend on the average square momentum of
the nuclear fragments as allowed by Fer 3m_imotion. A precise formulation of these ideas in terms

of a statistical model was obtained by Goldhaber (1974).

4. Approximation Procedures

4.1. Neglect of Target Fragmentation

Using equations (3.5), (3.6), and (3.7) in the evaluation of the source term Q (x, f_, E) of
equation (3.1) results in

P tQ (x,a,E) = E dE' dfYak(E')¢k(x,a',E')[_,jk(E ) fPjk (E,E',f_,a')
k

+ (E,E',a,a't]
---_7(x,a, E) + ;/(x, a, E) (4.1)



where, as before, the superscripts P and T refer to fragmentation of the projectile and target,

respectively. The target term is

¢(x,a,z):Z m -mz--T 2 V"_ exp
k 2rr (rTjk ¢jk

I ,I? , ixx dn dE' _%(E) ok(E') 6k (4.2)

which is negligibly small for

E>>--

Thus, for calculating the flux at high energy

(4.3)

9 (x,n,E) _ (f (x,a,E) (4.4)

4.2. Space Radiations

A convenient property of space radiations is that they are nearly isotropic. This fact, coupled

with the forward peaked spectral distribution, leads to substantial reductions in the source term

as follows:

] 3/2

x exp 2 (a_) 2 ] 6k (x, Ft', E*) (4.5)

If 6k (x, fl', E ') is assumed to bc a slowly varying function of fl', one may seek an expansion

about the sharply peaked maximum of the exponential function. Such an expansion is made by

letting

f_' = Ft + (cos0 - 1)f_ + eosin0 (4.6)

where

and

The flux may be expanded as

cos 0 = _t. _' (4.7)

_x_ '

e¢ - la x n'l (4.8)

[0 ]6k (x, f_', E') = 6k (x, a, E') + _-_ 6k (x, f_, E') • [(cos 0 - 1)a + eo sin 0] +...

10
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Substituting equation (4.9) into equation (4.5) and simplifying result in

k
3/2 2 (_jk) J

• _ Ck [2mECE-Z +...} (4.10)

The leading term of equation (4.10) is clearly a good approximation to the source term whencver

2mE a _ _k (x,a, E')
(4.11)

The leading term is equivalent to assuming that secondary ions are produced only in the direction
of motion of the primary ions. For space radiations which are nearly isotropic, relation (4.11)

is easily met, and neglect of higher order terms in equation (4.10) results in the usual straight
ahead approximation. If the radiation is highly anisotropic, then relation (4.11) is not likely to

apply. Validity of the straight ahead approximation was discovered empirically by Alsmillcr et al.

(1965) and Alsmiller, Irving, and Moran (1968) for proton transport.

4.3. Velocity Conserving Interaction

Customarily, in cosmic ion transport studies (Curtis and Wilkinson 1972), tile fragment
velocities are assumed to be equal to the fragmenting ion velocity before collision. The order of

approximation resulting from such an assumption is derived. Since the projectile energy E r is

assumed to be equal to the secondary energy plus a positive quantity e,

E _ = E + e (4.12)

and _ is assumed to contribute to equation (4.10) only over a small range above zero energy,

substituting equation (4.12) into equation (4.10) and expanding the integrand result in

(f(x,a,E) { [t: _'k c%(E) u_(E) Ck (x,f_,E) 1- _l

(4.13)

Because _/(a_)-/mE << lat those energies for which most nuclear reactions occur, the
yx_/

assumption of velocity conservation is clearly inferior to a straight ahead approximation but may
be adequate for space radiations where the variation of Ck (x, Ft, E) with energy is sufficiently

smooth. That is,
0

E _ Ck(x, _, E) _ Ck(x,_, E)

11



4.4. Decoupling of Target and Projectile Flux

Equation (3.1) with the use of equation (4.1) may be rewritten as

BjCj (x, n,E) = _ FjT Ck (x, n,E) + _ Fj_ Ck (x, n, E) (4.14)
k k

where tile differential operator is given by

[ I cg Sj(E)+o'j(E)] (4.15)Bj = n V Aj OE

and the integral operator (Fjk = FjT + F_) is given by

0h(x,n,E)= fdE' m' (E,E',a, a') (x,a', E') (4.16)

Defining the flux as a sum of two terms

¢5(x,a, E) = _y (x,a, E) + 0_'(x, n, E) (4.17)

allows the following separation:

Bj ¢P (x, fl, E) : _ FjP CP (x, _t, E) + _ FjPcT (x, 11, E) (4.18)
k k

Bj Cy (x, fl, E) = y_ rj r ¢P (x, Ft, E) + _ Fjr ¢T (x,a, E) (4.19)
k k

As noted in connection with equations (4.1) through (4.4), the source term on the right-hand

side of equation (4.19) is small at high energies and one may assume

+y (x,a, E) _ 0 (4.20)

for E >> (a T)2/m As a result of equation (4.20) and the fact that the ion range is smalljk
compared with its mean free path at low energy, one obtains

B9 cP (x, a, E)_ _ Fj_ cP (x, a,E) (4.21)
k

B9 ¢y (x, a, E)_ _ F_ +P (x, fl, E) (4.22)
k

The advantage of this separation is that once equation (4.21) is solved by whatever means

necessary, then equat[on (4.22) can be solved in closed form. The solution of equation (4.22) is

accomplished by noting that the inwardly directed flux 4_f must vanish on the boundary so that

/_ AjPj(E') E",¢/(x,a,E) _ E dE' Pj(E)Sj(E) f dE" dn _ (E', a,a')
k

x cP {x + [Rj(E) - Rj(E')] Ft, a', E"} (4.23)

where E_ = R_l[d + Rj (E)] with d the projected distance to the boundary.

12



Usingequations(3.5)and (3.7)in equation(4.23)yields

Aj Pj(E') T T 2
Cy(x,n,E) _ dE'pj(E) Sj(E) 27r (o_k

× ([ {,,+ [n.(E) - nj(E')] a}

3/2

exp

(4.24)

where

and ark has been assumed to be a slowly varying function of projectile type k and projectile
energy E. If the range of secondary type j ions is small compared with their mean free path

lengths and the mean free paths of the fragmenting parent ions gk, that is,

nj << t k (4.26)

then the integral Of equation (4.24) may be simplified as

Aj

4(x,.,_)__y(x)f '.-G)'J,,n_o.,[(-,,)J_''_' (4._)

which may be reduced i_ito terms of known functions. Thus,

Aj 1 mE - F , (4.28)

in terms of the incomplete gamma function. One can show that equation (3.28) is equivalent to

@y(x, fl, E)_ _ _ _erfc _ -- _ erfc [_ @_)2J

mE cxp _ - 2 exp- + -(-,%)'-J_ _(-,%)[(-,_)'J

At points sufficiently removed from the boundary such that

/_j-l(d) >> --
m

(4.29)

(4.30)
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equation (4.28) may be reduced to

Aj T 1 [1

[rn_]_mE exp I(m_ I } (4.31)

The solution of equation (4.21) is now examined further.

4.5. Back-Substitution and Perturbation Theory

One approach to the solution of equation (4.21) results from the fact that the multiple-

charged ions tend to be destroyed in nuclear reactions. Thus,

F_ - 0 (j _>k) (4.32)

This means that there is a maximum j such that

Bj Off (x, _, E) = 0 (4.33)

where J is the largest j. Furthermore,

P
B j_ 1 _bj_ 1 (x, a, E) : F;_I, J O P (x, a, El (4.34)

and, in general,
N 1

P (x, n, E) P cPBJ-N _gJ-g : E d-kFj_N,j_ k (x, gt, E) (4.35)
k=l

for N < J- 1. Note that equations (4.34) and (4.35) constitute solvable problems. The singly

charged ions satisfy

J

B_ OP (x, a, E) F P oP1(x, n, E) + __, F P CP (x, n, E) (4.36)---- 1,1 . 1,k k
k-2

which, unlike equations (4.33) to (4.35), is an integral-differential equation that is difficult to

solve directly. Equation (4.35) is solvable by perturbation theory, and t!m resultant series is

known to converge rapidly for intermediate and low energies (Wilson and Lamkin 1975; Wilson

et al. 1989a and 1989b; Wilson and Townsend 1988). Note that equations (4.33) and (4.35) are

also obtained from perturbation theory as applied to equation (4.21) at the outset. Thus, the

perturbation series is expected to converge after the first J plus a few terms.

5. Galactic Ion Transport

In the present section, we expand on the methods developed earlier for nucleon transport

(Wilson and Lamkin 1975) by combining analytic and numerical tools. The galactic cosmic

ray ion transport problem is transformed to an integral along the characteristic curve of that

particular ion. As a result of the conservation of velocity in fragmentation, the perturbation

series (Wilson and Lamkin 1975) is replaced by a simple numerical procedure. The resulting
method reduces the difficulty associated with the low-energy discretization and the restriction
to a definite form for the stopping power. The resulting numerical computation is simple and

nondemanding from computer requirements and yet gives superior results compared with other
methods.
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In the presentwork, we use the straight aheadapproximationand neglectthe target
secondaryfragments(Wilson1977aand1983).Formultiplychargedions,thetransportequation
maybewritten as

[0 0 ]ox oE s_(s) + oj ,j(x, E) = Z my_. Ck(x,E) (5.1)
k>j

where q_j (x, E) is tile flux of ions of type j with atomic mass Aj at x moving along the x axis at
energy E in units of MeV/amu, cU is the corresponding macroscopic nuclear absorption cross

section, Sj (E) is the change in E per unit distance, and rnjk is the multiplicity of ion j produced
in collision by ion k. The corresponding nucleon transport equation is

[ ] /?0 0 _j(E) + _j(E) Cj(x,E) : _ _jk(E,E') _.(_,E') dE'
Ox OE _. E

(5.2)

The quantities mjk and aj are assumed energy independent in equation (5.1) but are fully energy
dependent in equation (5.2).

The range of the ion is given as

fO E dE' (5.3)Rj(E) = _j(E,)

The solution to equation (5.2) is found to be subject to boundary specification at x = 0 and
arbitrary E as

@(0, E) = Fj(E) (5.4)

Usually, Fj(E) is called the incident beam spectrum.

Prom Bethe's theory,

_j(E) = A_z9 _(E) (5.5)

and holds for all energies above 100 keV/amu provided the ions remain fully stripped. It follows
that

zJ nj(E): z_ np(E) (5.6)
At

The subscript p refers to proton. Equation (5.6) is quite accurate at high energy and only
approximately true at low energy because of electron capture by the ion which effectively reduces

its charge, higher order Born corrections to Bethe's theory, and nuclear stopping at the lowest

energies. Herein, the parameter _j is defined as

_j nj(E):.k nk(E) (5.7)

so that

z_ (5.8)
uj - Aj

Equations (5.6) to (5.8) are used in the subsequent development, and the energy variation in vj
is neglected. The inverse function of Rj(E) is defined as

E : R] 1 [Rj(E)] (5.9)
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A methodof solutionis nowdiscussed.For the purposeof solvingequation(5.2), definethe
coordinates

,j = x - nj(E) (5.10)

(j - x + Rj(E) (5.11)

where _j varies along the particle path and _j is constant along the particle trajectory. The new
fluence functions are taken as

x¢%,_j) - _j(E) Cj(x, E) : _j(x, r_) (5.12)

where

_k(,j, _j) -- Xk(Vk,_k) (5.13)

(j+_j =_k+_k (5.14)

uj

and rj = Rj(E). Under this coordinate mapping, equation (5.1) becomes

(5.15)

where aj is assumed to be energy independent. There is a small variation in aj (_20 percent)
which must eventually be taken into account. Solving equation (5.16) by u'sing line integration

with an integrating factor

pj(rlj,_j)= exp[_aj(_j + r]j)] (5.17)

results in

[1 ]Xj(Tjj,_j) = exp -_aj((j + rlj) Xj(-(j,(j)

exp -_aj(r] 71) E " -- Xk('k,_k) drl'
+ 2 _J k rrt3k°'k b'k

(5.18)

where
Uk -- usI uk + uJ_l + _j

qk-- 2u k 2-uvk

and
_ - uk + uj

k 2u k 2u k

Defining

¢_(_, rj) = xj(_j,¢j)

one may show

/0x (¢j(x, rj) =exp(-ajx)¢j(O, rj + x) + dz exp(-ajz) E mjkcrk _k Ck x--
k

z, rk + VJ z]"_
uk /

(5.19)

(5.20)
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Furthermore,it is easyto showthat

Cj(x + h, rj) = exp(-(Tjh) Cj(x, rj + h)

// (+ dzexp(-ajz)_ uj Ck x+h-
k mjkak _--£

(5.21)

It is clear from equation (5.20) that

Ck(X + h - z, rk) = cxp[-ak(h - z)] _pk(x, r k + h) + O(h - z) (5.22)

which upon substitution into equation (5.21) yields

Cj(x + h, rj) = exp(-ajh) Cj(x, rj + h)

f0 h _'J exp[_(rk(h_ z) ] Ck(x,+ dz exp(-ajz)_ rnjkc_k-_k
k

\1/4

+ _z + h - z! (5.23)r k
/

which is correct to order h 2. This expression may be further approximated by

Cj(x + h, rj) --exp(-ajh) Cj(x, rj + h)

k k _k _j l wA.x,
r_ + _'Jh!x (5.24)

/'/k /

which is accurate to O [(u k - _,j) h]. Equation (5.24) is the basis of the Galactic Cosmic Rays

(GCR) Transport Code GCRTRN (Wilson and Badavi 1986; Wilson, Townsend, and Badavi

1987a; Wilson and Townsend 1988). The nucleon transport equation (4.2) is solved by adding

the heavy ion collision source of nucleons to the BRYNTRN code (Wilson et al. 1989).

There are several quantities of interest that are now given. The integral fluence is given as

FCj(x,> E)= ¢j(x, r) dr (5.25)
j(E)

The energy absorption per gram is

FDj(x,> E) = Ajg.'j[x, Rj(E)] dE (5.26)

with the dose equivalent given as

A fO(2Uj(x,> E) = j! QF ¢j[x, Rj(E)] dE
JE

(5.27)

These quantities are used in shield design studies for protection against galactic cosmic rays.

6. Analytic Benchmarks

In this section, we address the question of GCR transport code validation. Ideally, validation

should be accomplished with detailed transport data obtained from carefully planned and

controlled experiments; unfortunately, there exists a paucity of such data. Although usefld

for comparison purposes, the atmospheric propagation measurements used previously (Wilson,

Townsend, and Badavi 1987a) are clearly not definitive because they consist of integral fluences
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of as manyas l0 differentnuclearspeciescombinedinto a singledatum. Although limited
quantitiesof HZE dosimetrymeasurementsfrom mannedspacemissions(e.g.,Skylab) are
also available(Benton, Henke,and Peterson1977),numerousassumptionsconcerningthe
relationshipsbetweendosimeterlocationsandspacecraftshiehtthicknessesandgeometrymust
be madeto estimateastronaut(loseswith GCR codes.Becausemanyof theseassumptions
may involveinherentlylargeuncertainties(a factor of 2 or greater), it becomesdifficult to
attribute anydifferencesto particularassumptionsor approximationsthat mayhavebeenused
in theanalyses.Without definitiveGCRtransportmeasurementswith whichto comparecode
predictions,othermethodsof validationmust beconsidered.As notedby Wilson (1983)and
Wilson et al. (1989a),there areseveraldifferentversionsof HZE transport codesavailable.
When usedwith the sameinput spectra,interactionparameters,and boundaryconditions,
all shouldyield comparableresults. The history of transport code development, however,

suggests otherwise. For this reason, a realistic, nontrivial, exact, analytic solution to the
simplified Boltzmann equation used to describe HZE transport has been formulated as an

absolute standard for code comparison purposes.

For the benchmark problem, the incident spectrum is limited to a single ion type (j = J).
Because the GCtt spectrum for a typical ion is of the form

F(E) _.. E -c_ (6.1)

where a _ 2.5, we choose the energy spectrum to be of similar functional form as

[Rj(E)]2 (6.2)

Defining the characteristic variables as

rlj = x - Rj(E) (6.3)

and

= + nj(E) (6.4)

equation (5.1) can be solved by the method of characteristics (Wilson 1977a; Wilson, et al.

1989) to give

exp(--&jx) (6.5)
Cj(x, E) = [.jx + Rj(E)]2

where

and

(6.6)

&j = orj(1 - rnjj) (6.7)

This is the trivial solution for the incident beam species. For j < J (secondary fragments), it
can be shown that

uj ij(x,E) exp[-(@rlj +6 J _j)]g'j(x, E) = o'jmjj _j 2 (6.8)

where in terms of the exponential integral function E2(x) (see Abramowitz and Stegun 1964),

[j(x,E) = exp[-b(u___j_+ u_j)_j/2] [|E2(buj_j)
lid -- uj [ .j_j

E2 (buj_j) ] (6.9)

"J J J
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forj=J-1 and

b - aj - aj (6.10)

uj - uj

Clearly, equations (6.9) and (6.10) are true for all j if m_j = 0 for all values of j < J (i.e., if the

secondary fragments themselves do not fragment).

The benchmark solution was calculated for an incident iron beam (J = 26) in an aluminum

target, for which the input parameters are _26 = 0.04568 cm2/g, c_25 = 0.04260 cm2/g, and

rn25,26 a26 = 0.00403 cm2/g. Results of the GCR transport code simulation of this benchmark

for the propagating incident iron beam and secondary manganese (j = 25) ions and the exact

analytic predictions obtained from equations (6.5) and (6.8) are given in tables 6.1 and 6.2. It is

clear from these tabulated results that the numerical solution methods developed previously

(Wilson and Badavi 1986; Wilson, Townsend, and Badavi 1987a) are accurate in solving

equation (5.1) for GCR transport to within about 1 percent. This indicates that any limitations

to accurately solving GCR transport problems must focus upon the simplifying approximations

used to obtain equation (5.1) as well as upon unresolved issues concerning the need to include

multiple coulomb scattering effects, fragment momentum dispersion effects, and perhaps most

important, the nature and quality of the input cross-section data bases. To illustrate this point,

we are aware of only one heavy ion transport code (Wilson et al. 1984), which uses energy-

dependent cross sections. Recent studies, however, suggest that fully energy-dependent cross

sections may be important for some transport code applications (Townsend and Wilson 1988).

Table 6.1. Benchmark Numerical Sinmlation and Analytic Solution for Iron hms

as Function of Ion Depth a and Energy Into Aluminum Absorber

E_

MeV/amu

0.0198

0.11,17

1.090

10.07

100.1

1 059

10 490

CFc(0, E) _'_,Fc(10,E) CFe(20, E)

Numerical

1.394 x 105

1.692 x 104

9.217 x 102

1.062 x 101

9.310 x i0 -3

5.089 x 10 .6

2.970 x 10 8

Analytic

1.394 x 105

1.692 x 104

9.217 x 10:2

1.062 x 101

9.310 x 10 .3

5.089 x 10 .6

2.970 x 10 -8

Numerical

4.334 x 10 .5

4.334 x 10 .5

4.333 x 10 .5

4.321 x 10 .5

3.699 x 10 -5

2.014 x 10 -6

1.833 x 10 -s

Analytic

4.382 x 10 -5

4.381 x 10 .5

4.379 x 10 5

4.360 x 10 -5

3.718 x 10 .5

2.019 x 10 .6

1.833 x 10 -s

Numerical

6.942 x 10 .6

6.9,12 x 10 .6

6.9,'12 x 10 6

6.932 x 10 .6

6.400 x 10 -6

8.741 x 10 .7

1.132 x 10 .8

Analytic

7.044 x 10 6

7.044 x 10 .6

7.043 x 10 6

7.027 x 10 -6

6..'178 x 10 .6

8.799 x 10 -7

1.132 x 10 -8

aDepth is given in g/cm 2.

Table 6.2. Benchmark Numerical Simulation and Analytic Solution for Secondary Manganese

Ions as Function of Ion Depth ° and Ener_' Into Aluminum Absorber

E_

MeV/amu

0.0198

0.1147

1.090

10.07

100.1

1 059

10 490

aDepth

¢Mn(10, E)

Numerical Analytic

1.772 x 10 .6

1.772 x 10 -6

1.772 x 10 .6

1.767 x 10 -6

1.504 x 10 .6

7.797 x 10 .8

7.004 x 10 -I°

1.780 x 10 6

1.780 x 10 6

1.779 x 10 .6

1.771 x 10 -6

1.503 x 10 6

7.806 x 10 -s

7.004 x 10 -m

ls given in g/cm 2.

_,Mn (20, E)

Numerical A n alyt ic

5.704 x 10 -7

5.704 x 10 -7

5.704 x 10 -7

5.696 x 10 -7

5.242 x 10 .7

6.880 x 10 -8

8.728 x 10 -m

5.768 x 10 .7

5.768 x 10 .7

5.767 x 10 -7

5.753 x 10 -7

5.219 x 10 -7

6.918 x 10 .8

8.728 x 10 m
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7. High Charge and Energy (HZE) Nuclear Data Base

The nuclear cross sections for neutron and proton interactions are described extensively by

Wilson et al. (1989a and 1989b). The heavy ion absorption cross sections aabs are currently
derived from

A1/3 2: ro
which was fit to the asymptotic nuclear cross sections calculated by Wilson and Townsend
(1981).

in the abrasion-ablation fragmentation model, the projectile nuclei, moving at relativistic
speeds, collide with stationary target nuclei. In the abrasion step, those portions of the nuclear

volumes that overlap are sheared away by the collision. The remaining projectile piece, called a

prefragment or primary residue, continues its trajectory with essentially its precollision velocity.

As a result of the dynamics of the abrasion process, the prefragment is highly excited and

subsequently decays by the emission Of gamma radiation and/or nuclear particles. This step

is the ablation stage. The resultant isotope, sometimes referred to as a secondary product, is

the nuclear fragment whose cross section is measured. The abrasion process can be analyzed
with classical geometric arguments (Bowman, Swiatecki, and Tsang 1973) or methods obtained

from formal quantum scattering theory (Townsend et al. 1986a and 1986b). The ablation stage

can be analyzed from geometric arguments (Bowman, Swiatecki, and Tsang 1973) or more

sophisticated methods based upon Monte Carlo or intranuclear cascade techniques (Gosset

et al. 1977; Hfifner, Sch_fer, and Schiirmann 1975; Morrissey et al. 1978; Guthrie 1970).
Predictions of fragmentation cross sections can also be made with the approximate semiempirical

parameterization formulas of Silberberg, Tsao, and Shapiro (1976) and Silberberg, Tsao, and
Letaw (1983).

The amount of nuclear material stripped away in the collision of two nuclei of radius Rp and

RT is taken as the volume of overlap region times an average attenuation factor. The relevant

formula for the constituents in the overlap volume in the projectile is given by the following
formula:

1 1

where Cp and C:r arc the maximum chord lengths of the intersecting surface in the projectile

and the target, respectively, A is tile nuclear mean free path, and the expressions for F differ

depending on the nature of the collision (peripheral versus central) and the relative sizes of the
colliding nuclei.

For RT > Rp, we have (Gosset et al. 1977)

P =O.125(#v)l/2 (1- 2) (1_-) 2

(7.3)

and

F = 0.75(1 - v)l/2 (_--_-) 2

-0.12513(1-_,)1/2-1] (_) 3 (7.4)
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with

and

Rp
/2-

Rp -t- R T

b

Rp -[- R T

(7.5)

(7.6)

1 R T
p = - - 1 - (7.7)

u Rp

Equations (7.3) and (7.4) are valid when the collision is peripheral (i.e., the two nuclear volumes

do not completely overlap). In this case, the impact parameter b is restricted such that

RT - Rp < b < RT + Rp (7.8)

If the collision is central, then the projectile nucleus volume completely overlaps the target

nucleus volume (b < RT- Rp), and all the projectile nucleons are abraded. In this case,

equations (7.3) and (7.4) are replaced by

P = -1 (7.9)

and

F = 1 (7.10)

and there is no ablation of the projectile because it was destroyed by the abrasion.

For the case where Rp > nv and the collision are peripheral, equations (7.3) and (7.4)

become (Morrissey et al. 1978)

=
- 0.125{0.5 (_) 1/2( 1-2 ) [(1/u)(1--#2)l/2--1][(2--#)Iz]l/2};3

(7.11)

and

F = O.75(1- u)l/2 ( _) 2 - 0.125{ 3(1 -#u) 1/2 [1-(1-132)3/2][1-(1-P)2]1/2} (_) a#a
(7.12)

where the impact parameter is restricted such that

Rp - R T < b < Rp + R T (7.13)

For a central collision (b < Rp - RT) with Rp > RT, equations (7.11) and (7.12) become

P= [1(1-#2)1/2-1] [1- (_) 2-1/2
(7.14)

and

F= [1-(1-#2)3/2] [1- (_)2] 1/2

The charge ratio of removed nuclear matter is assumed to be that of the parent nucleus.

(7.15)
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The surfacedistortionexcitationenergyof the projectileprefragmentfollowingabrasionof
rn nucleons is calculated from the clean-cut abrasion formalism of Bowman, Swiateeki, and

Tsang (1973). For this model, the colliding nuclei are assumed to be uniform spheres of radii

Ri (i = P, T). In collision, the overlapping volumes shear off so that the resultant projectile

prefragment is a sphere with a cylindrical hole gouged out of it. The excitation energy is then

determined by calculating the difference in surface area between the misshapen sphere and a
perfect sphere of equal volume. This excess surface area AS is given by Gosset et al. (1977) as

AS = 47rRp2[1+ P - (1 - F) 2/3] (7.16)

where the expressions for P and F differ depending upon the nature of the collision (peripheral

versus central) and the relative sizes of the colliding nuclei which were given in previous

equations.

The excitation energy associated with surface energy is known to be 0.95 MeV/fm 2 for near

equilibrium nuclei so that

E_ = 0.95 AS (7.17)

for small surface distortions. When large numbers of nucleons are removed in the abrasion

process, equation (7.17) is expected to be an underestimate of the actual excitation. We therefore
introduce an excess excitation factor in terms of the number of abraded nucleons Z_ab r as

10Aab r 25A2br
f= i+--+-- (7.18)

Ap A_

which approaches 1 when the impact parameter is large but increases the excess excitation when

many nucleons are removed in the collisions and when grossly misshapened nuclei are formed.
The total excitation energy is then

Es = Ersf (7.19)

which reduces to equation (7.17) for small A_b r. We assume that all fragments with a mass
of 5 are unbound, 90 percent of the fl'agments with a mass of 8 are unbound, and 50 percent of

fragments with a mass of 9 (gB) are unbound.

A secondary contribution to the excitation energy is the transfer of kinetic energy of relative

motion across tile intersecting boundary of the two ions. The rate of energy loss of a nucleon
when it passes through nuclear matter (_Testfall et al. 1979) is taken at 13 MeV/fm, and the

energy deposit is assumed to be symmetrically dispersed about the azimuth so that 6.5 MeV/fm

per nucleon at the interface is the average rate of energy transfer into excitation energy. This

energy is transferred in single pm'tiele collision processes, and the energy is transferred to

excitation energy of the projectile for half of the events and leaves the projectile excitation

energy unchanged for tile remaining half of the events. The first estimate of this contribution is

to use the length of the longest chord C1 in the projectile surface interface. This chord length
is the maximum distance traveled by any target constituent through the projectile interior.

The number of other target constituents in the interface region may be found by estimating

the maximum chord Ct transverse to tile projectile velocity which spans the projectile surface

interface. The total excitation energy from excess surface and spectator interaction is then

1
/_x = 13C1 + _13CI(Ct - 1.5) (7.20)

where the second term only contributes if Ct > 1.5 fm. W'e further assume that the effective

longitudinal chord length for these remaining nucleons is one third the maximum chord length.
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Thedecayof highlyexcitednuclearstatesis dominatedby heavyparticleemission.In the
presentmodel,weassumeanucleonis removedfor every10MeVof excitationenergyas

Es + Ex
Aabl -- 10 MeV (7.21)

In accordance with the previously discussed directionality of the energy transfer, Ex has two
values as

(7.22)

where Pj is the corresponding probability of occurrence of each value in collisions.

The number of nucleons removed through the abrasion-ablation process is given as a flmction
of impact parameter as

AA = Aabr(b ) + Aabl(b ) (7.23)

The values of AA for carbon projectiles on a copper target and for copper projcctilcs on a carbon

target are shown in figure 7.1. For each projcctile, the dashed curve corresponds to Ez = 0,

whereas the solid curve corresponds to Ez = E_ as given by equation (7.20). A real collision

would be given by a statistical distribution between the limits shown by these two curves. The

average event is calculated as if the two extremes occurred with equal probability, as noted in

equations (7.22).

The nuclear fragmentation parameters herein are approximated according to the abrasion-

ablation model of Bowman, Swiatecki, and Tsang (1973). The cross section for removal of AA
nucleons is estimated as

 (aA) = - (7.24)

where b2 is the impact parameter for which the volume of intersection of the projectile contains

/kab r nucleons and the resulting excitation energies release an additional Aab I nucleons at the

rate of 1 nucleon for every 10 MeV of excitation such that

Aabr(b2) +Aabl(b2) = AA- -
1
2 (7.25)

and similarly for bl
1

Aabr(bl ) -t- Aabl(bl ) = AA + _ (7.26)

The charge distributions of the final projectile fragments are strongly affected by nuclear

stability. We expect that the Rudstam (1966) charge distribution for a given a(AA) to be
reasonably correct as

a(AF, ZF) : F1 exp (-RIZ F - SA F + TA2F[a/2) a(AA) (7.27)

where R = ll.8/A D, D = 0.45, S = 0.486, and T = 3.8 x 10.4 according to Rudstam and F1 is
a normalizing factor such that

a(AF, ZF) = cr(AA) (7.28)
ZF
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Figure 7.1. Nucleon removal number as function of impact parameter in carbon-copper collisions.

The Rudstam formula for a(AA) was not used because the AA dependence is too simple and

breaks down for heavy targets (Townsend et al. 1984; Townsend, Wilson, and Norbury 1985).

The charge of the removed nucleons AZ is calculated according to charge conservation

Zp = ZF + AZ (7.29)

and is divided among the nucleons and alpha particles according to the following rules. The
abraded nucleons are those removed from that portion of projectile in the overlap region with

the target. Therefore, the abraded nucleon charge is assumed to be proportional to the charge

fraction of the projectile nucleus as

ZPAabr (7.30)
Z_br -- At,

This, of course, ignores the charge separation caused by the giant dipole resonance model of

Morrissey et al. (1978). The charge release in the ablation is then given as

Zab 1 ----- nZ - Zab r (7.31)

which simply conserves the remaining charge.

The alpha particle i_known to be unusually tightly bound in comparison with other nucleon

arrangements. Because of this usually tight binding of the alpha particle, the helium production
is maximized in the ablation process

where int(x) denotes the integer part of x. The number of protons produced is given by charge
conservation as

Np = AZ - 2Nc_ (7.33)

Similarly, neutral conservation requires the number of neutrons produced to be

Nn = AA - Np - 4_ (7.34)

The fragments with masses of 2 and 3 are ignored.
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The calculationis performedfor AA = 1 to AA = Ap - 1, for which the cross section

associated with AA > Ap - 0.5 is missed. These are, of course, the central collisions for which

the projectile is assumed to disintegrate into single nucleons if Rp < R T as

Np = Zp (7.35)

N_ = Ap - Zp (7.36)

and is ignored otherwise. The energetic target fragments are being ignored as well as the mesonic

components. The peripheral collisions with AA < 0.5 are also missing. Most important in these

near collisions is the coulomb dissociation process studied by Norbury and Townsend (1986).

Only the nuclear radius for use in the model is yet undefined. Equation (7.1) is an accurate

representation of the high-energy cross sections. The choice of nuclear radius as

R = 1.26AU3 (7.37)

is consistent with equation (7.1) for r0 = 1.26 fm when the peripheral collisions (AA < 0.5) are

taken into account. This completes the description of the basic fragmentation model in present
use.

In the present evaluation, we look only to elemental fragmentation cross sections for which

most of the experimental data have been obtained. This is also motivated by the crudeness of

the present model which is not expected to be completely accurate. Even so, the quality of the

experimental data base is uncertain with experiments of different groups differing by a factor

of 2, in general, and even more for specific isotopes.

The first comparison is with the experiments of Heckman (1975) with 12C ion beams at

1.05 GeV/amu on the series of targets extending from hydrogen to lead as shown in table 7.1.

The present calculations are shown as values in parentheses. The calculated values for hydrogen
targets are those of Rudstam (1966). Note that all values are within 20 percent of the

experiments with few exceptions (namely, fragments from hydrogen targets and the neutron

removal cross section in copper and lead targets).

The charge removal cross sections for several projectiles on carbon targets are given in

table 7.2. The agreement between the present model and the Lawrence Berkeley Laboratory

groups (Heckman 1975; Westfall et al. 1979) is quite good. Our results tend to be low compared

with the experiments of Webber et al. (1983a and 1983b) and Guerreau et al. (1983). The model

can be adjusted once experimental differences are resolved.

The elemental fragmentation cross section of iron projectiles on several targets is shown in
table 7.3. Again, reasonable agreement is found generally throughout the table with a few

examples of relatively large errors. The quantities in brackets at the bottom of the table are the
coulomb dissociation cross sections for forming manganese. These are to be added to the nuclear

fragmentation cross sections for manganese in parentheses before comparing with experimental
values.
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Table 7.1. Fragmentation Cross Sections of Carbon Beams

at 1.05 GeV/amu in Various Targets

[Quantities in parentheses are present theow]

Fragment.

Li

Be

B

C

Carbon cross section, a mb, in target of-

H

(b)

23 4- 2 (34)
17 4- 1 (22)
50 4- 4 (42)
28 4- 3 (lO)

Re

51 4- 2 (54)
35 4- 1 (32)

81 4- 4 (86)
._9± 3 (39)

C

52 4- 3 (61)

35 4- 1 (33)

78 4- 3 (100)

50 4- 4 (44)

Cu

71 4- 5 (81)

47 _ 2 (48)

119 i 8 (138)

86±8 (57)

Pb

103 4- 14 (113)

71 _ 6 (63)

203 i 32 (185)

139 _ 22 (79)

_Heckman 1975.

bValues in parentheses in this column are those of modified Rudstam (1966).

Table 7.2. Charge Removal Cross Sections of Various Projectiles on Carbon Targets

Quantities in parentheses are present theory;]
number in brackets is ener_" in GeV/amu ]

Charge removal cross section, rob, of projectile of

C [2.1 t O [2.1] O [0.91 Ne [0.47] Ar [0.21] Fe [1.881

(_) (_) (b) (b) (_) (d)AZ

0
1

2
3

4
5

6
7

8
9

lO
11

12
13

14

50 ± 4 (40)

78::/_3 (100)
35 ± 1 (33)
52 ± 2 (61)

45± 2 (45)
1o5± 4 (lOl)
116 ± 6 (93)
50± 2 (65)
36± 1 (24)
65 ± 3 (47)

176 + 5

164 ± 5
55=t=3
27±2

..... (40)
129± 3 (90)
2t4 ± 3 (98)
155 ± 3 (75)

140=l-3 (65)
74 ± 2 (54)
33 ± 1 (19)
..... (40)

...... (132)
--- (la)

154 :t: 26 (85)
122 ± 16 (72)

144 ± 19 (64)
81_ 15(59)

112 ± 15 (51)
90 ± 3 (50)

92 :i: 13 (44)
65 _=1_ (42)
83 ± 13 (37)

...... (35)

....... (64)
181 ± 27 (157)

124 _ 13 (110)
lOO± 11 (87)
87± 11 (76)
54 ± 9 (62)

78 ± 11 (67)
52± 7 (57)
55± 9 (52)

53 ± 7 (49)
54 ± lO (45)
59 ± lO (42)
57 ± I0 (39)
83 ± 11 (36)

...... (35)

aHeckman 1975.

bWebber et M, 1983a and 1983b.

CGuerreau et al. 1983.
dWestfall et al. 1979.

Comparing the model cross sections with the experimental data set reveals that 92 percent of
the calculated cross sections are within 50 percent of the measured values. If we reduce the error

band to 30 percent, we will find 81 percent of the cross sections are in agreement to within this

level. Among the least accurate are the ion on hydrogen target data which again is Rudstam's
theory and the cross sections of Webber et al. Note that our model agrees with experiments

to the extent that the experimentalists agree among themselves for the same projectile-target

combinations. From this point of view, little progress can be made in improving the model

until the experimental situation is clarified. The model of Silberberg, Tsao, and Shapiro (1976),

which includes many corrections to Rudstam's formulas, is preferred for hydrogen targets.
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The semiempirical model for argon fragmentation on carbon is shown with the quantum
mechanical optical model calculation (Townsend et al. 1986a) in figure 7.2. Also shown are

experimental data of Viyogi et al. (1979). Reasonable agreement is seen between the two
models except for neutron removal where there are no data )_t to resolve the difference (Wilson,

Townsend, and Badavi 1987b).
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Figure 7.2. Representative argon-carbon fragmentation cross sections.

8. Space Radiation Exposure Issues

The differences in radiosensitivity of various tissues within an individual as well as individual

differences are generally assumed to result from repair mechanisms (Curtis 1986; Fritz-Niggli

1988). The work of Swenberg, Holwitt, and Speicher (1990) suggests these differences may result
from the structural state of the DNA as well. Repair also affects the dose response for protracted

exposure. Current radiation protection guidelines use quality factors that are independent of

dose rate (no time modifying factors), which may' be of unusual importance in the small dose
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rate exposuresoftenexperiencedin space(NCRP98 (Anon.1989)).Clearly,well understood
doserate dependentmodelsare needed(Curtis 1986;Anon. 1989). Furthermore,exposure
receivedonamissionto theMoonor Marswill involveheavyionexposurefor whichmanyissues
concerningappropriaterelativebiologicaleffectiveness(RBE)factors(hence,quality factors)are
yet unknown.Theaccumulatedlevelsof heavyion exposurewill be largeandunprecedentedin
humanexperience(NachtweyandYang1991).Althoughtheseissuesmaybestudiedin ground-
basedexposureswith modelbiologicalsystems,extrapolatingto humanexposureis difficult at
bestand spacestressfactorssuchasmicrogravityareunknownpossiblemodifyingfactorsin
radiobiologicalresponse.

In addition to radiobiologicalresponseissuesis the needto evaluatedosenonuniformity
causedby body self-shielding(Khandelwaland Wilson 1974)and dosegradientswithin the
shieldingstructure.Forexample,it is wellknownthat tumorprevalencein thefemalebreastis
sitespecificevenfor relativeuniformexposure(NCRP85 (Anon.1986)).Weareled to believe
that the exposureof only sensitivesitesmay be effectivein tumor formation. Conversely,
exposureof insensitivesitesis assumedto benoneffective,andnommiformityof exposureis a
critical issue. In this section,wemakesomepreliminaryassessmentsconcerningtheseissues
andexaminea limited numberof shieldingstrategiesto mitigate theseradiationeffects.

8.1. Galactic Cosmic Ray Exposure

The incident galactic cosmic ray spectrum (Adams, Silberberg, and Tsao 1981; Adams I987)

for free space is propagated through the target material by using the accurate analytical-

numerical solutions to the transport equation described in chapter 10 of Wilson et al. 1991.

These solution methods have been verified (to within 2 percent accuracy) by comparison with

exact, analytical benchmark solutions to the ion transport equation (Wilson and Townsend
1988; Wilson et al. 1988).

These transport calculations include

1. Linear energy transfer (LET) dependent quality factors from ICRP 26 (Anon. 1977)

2. Dose contributions from propagating neutrons, protons, alpha particles, and heavy ions

(high energy, high charge (HZE) particles)

3. Dose contributions resulting from target nuclear fragments, primary particles, and their
secondaries

4. Dose contributions due to nuclear recoil in tissue

Major shortcomings of the calculations are as follows:

1. Except for tissue targets, contributions of fragments with masses of 2 and 3 are neglected

2. All secondary particles from HZE interactions are presently assumed to be produced with

a velocity equal to that of the incident particle; this is conservative for neutrons produced
in HZE particle fragmentations

3. Meson contributions to the propagating radiation fields are neglected

4. Nucleus-nucleus cross sections arc not fully energy dependent (nucleon-nucleus cross

sections are fully energy dependent)

These items are not conservative and probably alone result in a 15- to 30-percent underesti-

mate of the exposure. As discussed by Townsend, Wilson, and Nealy (1989) and Townsend and

Wilson (1988), the main sources of uncertainty are the input nuclear fragmentation model and

the incident galactic cosmic ray (GCR) spectrum. Taken together, they could easily impose an
uncertainty factor of 2 or more in the exposure predictions.
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8.2. Results

In the present results, we use tile ICRP 26 (Anon. 1977) quality factors which arc currently

in force within the U.S. space program. Figure 8.1 displays dose equivalent (in units of sieverts

per year) as a function of water shield thickness (in units of areal density, grams per centimeter 2,

or thickness, centimeters). Curves are displayed for solar minimum and solar maximum periods.

For all thicknesses considered, the dose and dose equivalent during solar maximum are less than

half the dose equivalent during solar minimum, at least according to the current estimates using

the CREME environmental model of Adams (1987). Figure 8.2 displays results for dose and

dose equivalent behind an aluminum shield. Also shown are measurements using the argon

ion chambers at two shielded locations (Kovalev, Muratova, and Petrov 1989). The results

for the location at 1 g/cm 2 are the most clear by experimental design. The mass distribution

for the deeply shielded counter was poorly defined (Kovalev, Muratova, and Petrov 1989); this

uncertainty is denoted in the figure by using parentheses around the data points. The solar

maximum model predicted by CREME is clearly an underestimate. The solar minimum model

appears in reasonable agreement with the Prognoz spacecraft data. Therefore, we wilt restrict

the present analysis to solar minimum periods, which arc the most limiting for GCR exposures.

This does not imply, however, that exposures (luring solar maximum periods are not important.

On the contra_', the cumulative exposures resulting from combined GCR and increased solar

flare activity during solar maximum could potentially be significant (Nealy et al. 1990). During

solar minimum periods, the estimated unshietded dose equivalent of 1.2 Sv does not exceed the

exposure limits for either the skin or the ocular lens (which are 3 Sv for skin and 2 Sv for ocular

lens). The dose equivalent at a depth of 5 cm, which yields an estimate of the exposure to

the unshielded blood-forming organs (BFO), is 0.61 Sv, which exceeds the liInit of 0.5 Sv by

22 percent. To reduce this estimated exposure below 0.5 Sv requires approximately 3.5 g/cm 2

(3.5 cm) of water shielding in addition to the body self-shielding of 5 g/cm 2 (5 cm).
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Figure 8.1. Dose equivalent resulting from galac-
tic cosmic rays a.s function of water shield
thickness.

Figure 8.2. Deep space exposure behind alu-
minum shield. Parentheses denote depth in
interior of Prognoz spacecraft.

For relative comparison purposes, the BFO dose equivalent as a function of shield thickness

(areal density) is plotted in figure 8.3 for three materials (aluminum, water, and liquid hydrogen).

Shielding effectiveness per unit mass increases as the composition of the shield changes from

3O



heavier to lighter mass elements. For liquid hydrogen, an added advantage is the reduced neutron

fluenee caused by the absence of neutrons in the target composition and by the lack of target

fragment contributions because of the elementary nature of hydrogen. From these results, for

an allowed BFO exposure of 0.25 Sv/year, which corresponds to an uncertainty factor of 2 ill a

0.5 Sv/year estimate, the mass ratios for the shielding are approximately 1:5:11 for LH2:H20:A1.
Obviously, for GCR shielding, the materials of choice are those composed of low atomic mass

number constituents with significant hydrogen content.
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Figure 8.3. Dose equivalent in BFO as function of shield type and thickness.

Although the calculations are useful for estimating relative shield effectiveness to compare

different materials, quantitatively the calculations should be considered as preliminary estimates

of actual shield mass requirements. Aside from the previously mentioned shortcomings related
to neglecting meson production and target fragment contributions from interactions of HZE

particles and the target medium, figure 8.3 shows that the dose equivalent is a slowly decreasing

function of shield thickness. This is a result of secondary particle production processes whereby

the heavier GCR nuclei are broken into nucleons and lighter nuclear fragments by nuclear and

eoulombic interactions with tile shield material. This slow decrease in (lose equivalent with

increasing shield thickness means that relatively small uncertainties in predicted doses arising

from nuclear fragmentation model inaccuracies may yield large uncertainties in estimated shield

thicknesses. A preliminary analysis of the nonlinear relationship between exposure uncertainty

was presented by Townsend, Wilson, and Nealy (1989). The most startling finding was that an
uncertainty factor of 2 in exposure amplified into an order of magnitude uncertainty in shield

mass requirements.

8.3. Biological Effect Modifications

The rising RBE at low GCR dose results from the multitarget assumption in Katz theory
leading to the sigmoid behavior in the survival curve of low-LET radiation as opposed to the

exponential relationship for high-LET radiation (Cucinotta et al. 1991). The transition from

sigmoid to exponential behavior is observed by Todd and Tobias (1974) to occur at 150 to

200 keV/#m for mammalian cells. Many also believe that the sigmoid behavior is related to

repair mechanisms. This view is promoted by single exposure and split exposure experiments

with a delay of 2.5 or 23 hours between fractions using V79 hamster cells as shown in figure 8.4

(Elkind and Sutton 1960). Repair is indicated by the sigmoid response of the second exposure

after either the 2.5-hour repair period or especially tile 23-hour repair period. Obviously the
RBE based on such a photon exposure protocol depends on the history of the radiation induced

damage. Similar survival studies with confluent C3H10T1/2 mouse cells (G1) indicate no repair
for this end point for high-LET radiations (Yang et al. 1986). As a result of operative repair

mechanisms (sparing) for low-LET exposure (fig. 8.5) and the lack of repair for high-LET
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exposure(fig. 8.6),the correspondingRBE is doserate dependent(Yanget al. 1986)asshown
in figure 8.7. Also shownin figure 8.7 are the RBE valuesfor neoplastictransformations.
(Note,great liberty hasbeentakenin connectingthe datapoints.) The increasein RBE at
low doserate is in part indicativeof repairof the damagefor low-LET radiation (fig.8.8) but
additionalenhancementof high-LET exposureat low doserate (presumablysomemisrepair
mechanism)alsocontributesfor cell transformations(fig.8.9). If misrepair/repairplaysa role
then this shouhtbeobservedin thedelwedplatingexperimentsof Yanget al. (1989)asshown
in figure8.10. Insteadthe delayedplatingexperimentsshowno transforma_onmisrepairbut
repair appearsin cell survivaldata in distinctionto the earlierlow doseratq experienceswith
tile samecellsystem.
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Similar dose rate enhancement effects are observed in asynchronous cell cu!_ures by Hill et al.

(1982 and 1985, fig. 8.11) and whole animal exposures as observed by Thor_on et al. (1981a
and 1981b), Thomson, Williamson, and Grahn (1983, 1985a, 1985b, and 1986), and Thomson

and Grahn (1988 and 1989) (fig. 8.12). These effects are considered the result of cell cycle

phenomena (Rossi and Kellerer 1986; Brenner and Hall 1990). The basic model assumes that

some phases of the cell cycle are more affected by radiation exposure. This is clearly seen in

the cell synchronous experiments of Terasima and Tolmach (1963) shown in figure 8.13. The
model of dose rate enhancement assumes only one cell phase is effective in injury of only that

fraction in the sensitive phase. At a later time, a different fraction of cells is in the appropriate

phase providing two exposed groups of cells and an apparent enhanceme_, Such a model

was exploited in the work of Brenner and Hall (1990). This explanation fails to explain the
enhancement effects observed by Yang et al. (1989) in cell transformation in stationary phase

(G1) confluent C3H10T1/2.
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Clearly the risk to long-term GCR/SCR exposure will be difficult to evaluate because of

the low dose rate, fractionated components, and the complex mixture of low- and high-LET

radiations in space. Operative repair and cycle enhanced effects will require at least an intimate

knowledge of the LET distributions at affected tissues or possibly more comprehensive track
structure data.

8.4. Nuclear Models, Materials, and LET Spectra

As is clear from section 8.3, the distribution of exposure component over LET is a primary

indicator of biological response. For example, low-LET components allow certain biological

repairs at low dose rates and a low RBE value, whereas high-LET components can show increased

biological effects at low dose rates and generally high RBE values. There is clear evidence that
the relative contributions to exposure from various LET components can be altered through

the choice of shield material. The transmitted LET spectrum for an aluminum shield is shown

in figure 8.14, and the transmitted LET spectrum for a liquid hydrogen shield is shown in

figure 8.15. Note that the LET spectra in figures 8.14 and 8.15 are for LET in the respective

shield material. Although a rather large shift in LET can be accomplished by choice of shield

composition, an exact evaluation must await improved nuclear fragmentation cross sections

since uncertainty in cross sections cause LET shifts of the same order of magnitude. These
shifts can be seen when the LET spectra in the Earth's atmosphere obtained by using the

Bowman, Swiatecki, and Tsang (1973) fragmentation model shown in figure 8.16 are compared

with the spectra obtained by using the Langley fragmentation model shown in figure 8.17.
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8.5. Human Geometry Factors

The significance of improving the accuracy (Shinn, Wilson, and Nealy 1990) for predicting
the dose and dose equivalent that astronauts will incur during future NASA missions has

been demonstrated in several studies (Townsend, Wilson, and Nealy 1988; Nealy, Wilson, and

Townsend 1989). For example, Townsend, Wilson, and Nealy (1988) indicate that an increase of

20 percent in predicted BFO dose equivalent due to GCR's equates to a tripling of the required

shield mass from 5 to 16 g/cm 2 of water to meet the recommended annual BFO limit of 0.5 Sv.
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Large uncertaint!_s are associated with the current dose estimate analysis, and every possible
effort is needed to improve the accuracy to accomplish these missions in the most economical

way without compromising the well-being of the astronauts.

One of the customary estimation practices (Beck, Stokes, and Lushbaugh 1972) that has

been considered fairly reliable in the past is the use of the equivalent sphere model to obtain

dose or dose equivalent to BFO. Langley and Billings (1972b) examined the feasibility of using

a set of dosimetry spheres to monitor real-time organ doses received by astronauts under
various space radiation and vehicle conditions. They made comparisons between the doses

calculated for the spheres and the detailed body geometry under a range of solar proton energy

spectrum characteristics and also under various vehicle radiation shielding thicknesses. The

spectra were characterized by an assumed form described by Webber (1963). The optimal
radii were determined for those spheres with the corresponding correlation constants that best

represented the averaged organ doses under those assumed conditions. Although a moderate

error of 18 percent for the correlation was found, one might question if the accuracy will hold

under less idealized particle spectral conditions. This question was considered by Shinn, Wilson,

and Nealy (1990) and we discuss those results herein.

The calculation made in a separate study (Simonsen et al. 1990) for the radiation transport

through the atmosphere of Mars for the three largest solar flares observed in the last half

century is extended here to include detailed BFO geometry. Comparisons are made for the dose

equivalent to the various distributed BFO with the reported values based on the equivalent
sphere model.

The Langley Research Center nucleon transport code BRYNTRN (Wilson et al. 1989b) was

used by Simonsen et al. (1990) to obtain dose and close equivalent on the surface of Mars caused

by large solar flares. The transport code was based on the straight ahead approximation, which

reduces consideration to one-dimensional transport; the merits of this approximation }lave been

discussed elsewhere (Alsmiller et al. 1965; Alsmiller, Irving, and Moran 1968). An asymptotic

expansion for the solution to the transport equation in two dimensions, subject to boundary

conditions given for an arbitrary convex region, was derived by Wilson and Khandehval (1974).
The first term of the expansion was found to be an accurate approximation of the dose and for

the case of an isotropic proton fluence spectrum is given by

]0 f0D(x) = 47r ¢(E) R(t, E) fx(t) at dE (8.1)

with

fo f (t) dt = 1 (8.2)

where R(t, E) is the fluence-to-dose conversion factor at the depth t for normal incidence protons

on a slab and fx(t) is the areal density distribution function for the point x. The quantity

fz(t) dt is the fraction of the solid angle for which the distance to the surface from the point x
lies between t and t + dt.

To simplify the computational task (that is, without making any change to the BRYNTRN
code), equation (8.1) is rewritten as

D(x) = 47r fx(t) D_c(t) dt (8.3)

with

Dz(t) = _(E) R(t, E) dE (8.4)
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whereDx(t) is the dose (or dose equivalent) at depth t for normal incidence protons on a slab
of tissue. With tile areal density distribution function for BFO given by the detailed geometry

work described by Langley and Billings (1972a) and Billings and Yucker (1973), equation (8.3)

can be calculated.

8.6. Results

The three solar flare spectra used for this study are those of February 1956, November 1960,

and August 1972 events, whereas Langley and Billings used a Webber (19631 form of integral
spectra given by the inverse exponential of proton magnetic rigidity with a range of rigidity

parameter Po from 50 to 200 MV. Figure 8.18 shows these three flare spectra and the best fit
to the earlier two events with the Webber form. The actual spectra, especially the high-energy

range of the February 1956 event (Foelsche ct al. 1974), are different from the analytical form of
Webber. The actual spectrum (Wilson and Denn 1976) for the August 1972 event is accurately

approximated by the Webber form.
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Figure 8.18. Fluence spectra for three major solar particle events.

The average dose equivalents at the surface of Mars caused by these three solar flare events are

shown in figure 8.19 as a flmction of slab (water) thickness for the low-density Mars atmosphere

model (16 g/em 2 CO2 vertically) used in Simonsen et al. (1990). These average dose equivalent

values are obtained by summing the directional (anisotropic) dose equivalent over the solid angle

and are used as Dz(t) in this section. The calculated results from equation (8.3) are presented
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in table 8.1for the fivedistributedcompartmentsof the blood-formingorgans.Alsoshownfor
comparisonarethe averageBFO and5-cm(water)depthdoseequivalents.
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Figure 8.19. Dose equivalent at Mars surface as function of slab (water) thickness for low-density Mars atmosphere

model.

It is customary (Space Science Board 1970; Beck, Stokes, and Lushbaugh 1972) to represent

the average BFO exposure (dose or dose equivalent) with the 5-cm sphere based on the

recommendation of the Space Science Board (1970). Conversely, the average BFO dose was

found to be approximately half the 5-cm sphere (lose in several analytical findings, such as tile

one from Langley and Billings (1972b). For the August 1972 event, the average BFO value

for the detailed geometry (table 8.1) is fairly close (within 10 percent) to one half the value
for a 5-era sphere. However, tile differences are larger for the other two flares, with 30 and

41 percent for November 1960 and February 1956 spectra, respectively. This wide discrepancy

among these three events probably occurs because the two earlier flares contain more penetrating

high-energy protons (fig. 8.18) and the actual spectra do not conform to tile simple analytical

form that Langley and Billings (1972b) used. We further note that the 5-em sphere dose is
conservative for these three events. Also, the 5-cm sphere dose is conservative as was found for

GCR exposure by Townsend, Shinn, and Wilson (1991).

Table 8.1. BFO Dose Equivalent at Mars Surface for Low-Density Atmosphere Model

Solar

flare event

Feb. 1956

Nov. 1960

Aug. 1972

Dose equivalent, cSv, for

Arms lLegs [Hightrunk [Lowtrun k I Average ISkull t BFO value_-cm sphere

8.74 /8.60 1-- 8.32 [ 7.98 -gigi [ 8A5 [ 9194

566 t5.34 / 4.95 [ 4.32 5.75 / 5.21 / 7.31

3.20 | 2.73 | 2.42 | 1.76 3.09 ] 2.56 | 4.61
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9. Concluding Remarks
Great progresshasbeenmadein developingcodesfor spaceshieldingfor future NASA

programs.It is likewiseclearthat majoruncertaintiesremainin the environmentalmodel,the
nuclearcrosssections,andthe methodsfor estimatingbiologicalrisk. Theseuncertaintieshave
an important impacton shielddesignandmissioncost. Substantialwork remainsbeforeall
theseissuescanbe resolved.

=

NASA Langley Research Center

Hampton, VA 23665-5225

November 8, 1991
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